Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:
El álgebra lineal es una rama de las matemáticas que estudia conceptos tales como vectores, matrices, espacio dual, sistemas de ecuaciones lineales y en su enfoque de manera más formal, espacios vectoriales y sus transformaciones lineales.
Dicho de otra forma, el Álgebra lineal es la rama de las matemáticas que se ocupa de las ecuaciones lineales como:
y aplicaciones lineales tales como:
y sus representaciones en espacios vectoriales y a través de matrices.[1][2][3]
El álgebra lineal es fundamental en casi todas las áreas de las matemáticas. Por ejemplo, el álgebra lineal es fundamental en las presentaciones modernas de la geometría, incluso para definir objetos básicos como líneas, planos y rotaciones. Además, el análisis funcional, una rama del análisis matemático, puede considerarse básicamente como la aplicación del álgebra lineal al espacios de funciones.
El álgebra lineal también se utiliza en la mayoría de las ciencias y campos de la ingeniería, porque permite modelar muchos fenómenos naturales, y computar eficientemente con dichos modelos. Para los sistemas no lineales, que no pueden ser modelados con el álgebra lineal, se utiliza a menudo para tratar la aproximaciones de primer orden, utilizando el hecho de que la diferencial de una 'función multivariante' en un punto es el mapa lineal que mejor aproxima la función cerca de ese punto así como el análisis funcional, las ecuaciones diferenciales, la investigación de operaciones, las gráficas por computadora, la ingeniería entre otras más.
La historia del álgebra lineal moderna se remonta a 1843, cuando William Rowan Hamilton (de quien proviene el uso del término vector) creó los cuaterniones inspirado en los números complejos;[4] y a 1844, cuando Hermann Grassmann publicó su libro Die lineare Ausdehnungslehre (La teoría lineal de extensión)[5].